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The semiempirical theory of interaction of molecular and turbulent viscosities [i] 
is used to calculate the damping factor to the Prandtl equation and the average 
velocity distribution over the cross section of the transition portion of a turbu- 
lent boundary layer. 

i. Derivation of General Equations of the Damping Factor for Quasiparallel Shear Flow 
in the Absence of Longitudinal Pressure Transfer. Digressing in a number of cases from the 
substantial role of "heredity" in a turbulent boundary layer [2], in what follows we base the 
discussion on the classical Boussinnesq hypothesis, according to which the tangential shear 
stress T, equal to the sum of the ordinary viscous laminar x I and the turbulent ~t is deter- 
mined by the equation 

~ = T z  + T t = ~ d u / d y _ p ( u ~ o , >  = (~ + ~t) du/dy = ~du/dy ( 1  + _~__) . (1) 

For Tt, ~t, and v t we retain the usual Prandtl equations: 

/ du ~2 du = 12 du (2 )  

implying, however, under the "displacement method" not the usual, Prandtl mixing length Lp, 
equal in the transition region to Ip = ~y, but a more general one, taking into account the ef- 
fect of molecular viscosity on molar, turbulent transport. Thus, we obtain 

= = , plb \-~9/.  = Dip, 

where 

and 

\ d Y ]  = p •  (4) 

D = (l/l~)~ (5) 

is a correction factor to the Prandtl stress of turbulent shear, called "damping factor," 
and defines it as a square of the ratio of the real one, taking into account the effect of 
molecular viscosity of the "mixing length" I to the Prandtl ~p, where this effect is neglected. 

Two basic variables were introduced in [I], describing the motion in the transition re- 
gion of a turbulent boundary layer: 

i) the local Reynolds number 

R - l~ du/dy = nZy2du/dy , (6) 

2) the transition function from this number 

f ( R ) = l +  ~t (7) 

The introduction of these two concepts can validate that the Prandtl mixing length Ip 
is a characteristic local "linear scale," while its derivative at the local velocity gradient 
Ipdu/dy is a characteristic "velocity scale" at the given point of the normal to the solid 
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well cross section of the turbulent boundary layer. As to the "transition function" f(R), 
it reflects the transition from laminar motion directly near the solid wall, when v t = O, 
and, consequently, 

/ (R):= 1 at R - O ,  (8) 

to  p u r e l y  t u r b u l e n t  m o t i o n ,  f o r  which t h e r e  i s  a s im p le  s u p e r p o s i t i o n  o f  l a m i n a r  and t u r b u -  
l e n t  s h e a r  f a r  f rom the  s o l i d  w a l l  ( i n  t h e  a b s e n c e  o f  t h e i r  i n t e r a c t i o n ) ,  so t h a t  

f ( R ) =  1-1- ..... vte = 1 +  l~du/dy = I + R  at R---~co. (9) 

From definition (7) of the transition function f(R) and the local Reynolds number R 
(6), if directly follows that 

f - - 1  = f iat= 12du/dy = [ l ~2 l ~ d u / d y =  DR, 

which leads to the following general equation for the dependence of the damping factor D(R) 
on the transition function f(R): 

D(R) = f(R)--1 (10) 
R 

To relate the local Reynolds number R with the ordinate y of the given point of the 
boundary layer cross section, we stay on the simplest case of quasirectilinear purely shear 
motion, when the pressure is constant over the whole flow region, and the total shear stress 
T is also constant and equal to the friction stress at the wall Two In the transition region 
this motion differs little from the similar motion in the longitudinal flow of the boundary 
layer on the film. 

According to (i) and (7), we have 

= ~ f(R) = ~w. ( 1 1 )  

Comparing this equality with the definition of the local Reynolds number (6), and elimi- 
nating du/dy, we obtain 

~r (,l:,r/p) Rf (R)= (12) 
~g 

We transform now to the "universal" coordinates 

n = go,l~, ~ = ulv,;  v ,  = V ' ~ .  

From equality (12) then follows the unknown relation between R and ~: 

I 

(13) 

(14) 

This equation, basic for what follows, leads, together with (I0), to a parametric determina- 
tion of the damping factor as a function of n. 

2. Average Velocity Distribution over the Cross Section of the Transition Portion of 
the Turbulent Boundary Layer. The equality 

= ~du/d 9 + pl 2 (du/dy) z = ~du/dy + p• (D (du/dy) 2, (15) 

d i r e c t l y  f o l l o w i n g  from ( 1 ) - ( 3 ) ,  a c q u i r e s  t h e  f o l l o w i n g  form in  t h e  t r a n s i t i o n  to  the  u n i -  
v e r s a l  v a r i a b l e s  q and ~ (13) 

1 = d~/d~ + • (~) (d~/d~) z. (16) 

Solving for d{p/d~l, we obtain 
d~ _ 2 (17) 
dn 1-}-]/1-}-4• 

n 2dn (18) 
= u / v , =  .~ 

1 -+- V'I -4- 4• " d 
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Denoting by ~x the universal ordinate of the cross section point corresponding approximately 
to the outer boundary of the transition region, or in other words, to the beginning of the 
logarithmic portion of the velocity profile, we define ~x as the root of the approximate 
equation (~z, according to experimental data, is on the order of 25-30, and D(nx) = i): 

2 I (19) 
2 2  I ~ V 1 - p 4 •  0 • 

we r e w r i t e  (18) in  the  form 

i ~(n) = l + K l + 4 •  F _ ___ (20) 

Comparing (20) with the logarithmic velocity profile in the turbulent flow "core" 

we determine the constants A andB: 

Z303 

(p = u/v, = A lg ~ § B, (21) 

(22) ~'~ 2d~ 2.303__ lg ~1, B 
1 + ~ 1 + 4• • 0 

where the  numer ica l  f a c t o r  2.303 i s  the module of  decimal  l o g a r i t h m s .  

3. D e t e rm i na t i on  o f  the  T r a n s i t i o n  Func t ion .  0nly  two boundary va lue s  can s e rve  to 
e s t a b l i s h  the  form of  the  t r a n s i t i o n  f u n c t i o n :  (8) and (9 ) .  This i s ,  u l t i m a t e l y ,  i n s u f f -  
c i e n t  f o r  c h a r a c t e r i z i n g  i t s  r o l e  in  motion p r o c e s s e s  in  the  t r a n s i t i o n  r e g i o n .  

Based on s imple  r e l a x a t i o n  c o n s i d e r a t i o n s ,  the fo l l owing  t r a n s i t i o n  f u n c t i o n  was i n t r o -  
duced in  [1] 

[(R) = 1 + R(l--e-VR), (23) 

s a t i s f y i n g  the  boundary c o n d i t i o n s  mentioned above and, b e s i d e s ,  c o n t a i n i n g  f o r  small  R the 
asymptotic 

f0(R) = 1 + ?R 2, (24) 

refining the boundary value (8). In the same approximation we obtain from (14) 
J 

R = •  2, (25) 

and, consequently, from (24), 

[o0])----- 1 + 7• ~. (26) 

~---L " 7• ( 2 7 )  
V 

Hence follows the equality 

expressing the earlier theoretically derived and stated experiments of Deissler [3] and Han- 
ratty [4] of "fourth-order law" of decrease of the "turbulent viscosity" coefficient upon ap- 
proaching the solid wall. The experimentally determined coefficient y was equal in this law 
to 

Y = 0.0092 ,~ccoMing m Deissler), y = 0.0125 (according m Hanrat~L (28) 

Due to the smallness of this coefficient, the determination of the transition function by 
equality (23) becomes ineffective at large R, since the approximation of the function f(R) 
to its asymptote at large R: 

[~(R)= I q R (29) 

occurs at R values exceeding the available experimental data by many orders of magnitude. 
Indeed, putting in (23), for example, e-Y RI = 0.01, then for y = 0.0092 we have R, = 500, 
while, according to (14), for f(R,) = 1 + Rx we obtain the value ~ = 1250, which contra- 
dicts sharply the experimentally known interval of values nx = 25-30. 

As shown by the calculations performed in [I] of the average velocity distribution in 
the transition region and the dependence of the heat-transfer coefficient, the Stanton num- 
ber, on the Prandtl number at large values, the equation of the transition function (23) ap- 
plies successfully for small D (the external boundary region of the viscous sublayer). As 
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to large n, the impossibility was noted in [i] of using Eq. (23) in this region, and an ap- 
proximate method was suggested, consisting of the use of an intermediate collapse with a 
logarithm (21), similar to that used by Von Karman for the "buffer" region. The matching of 
these two logarithms was carried out for the value ~ = 30 chosen from experiment. This ap- 
proximate velocity profile was also used in the basic dependence of the Stanton number on 
the Prandtl number. 

In the present study this artificial method is eliminated; the transition function is 
assigned fully and uniquely in the whole interval of variation of R. For this purpose one 
more parameter is added to y and ~, taking into account the specific features of motion in 
the transition region. As such a parameter we take, as was also done in [I], the experi- 
mental constant n~, whose value, near ~, = 30, is refined in what follows. 

We denote by R, the value of the local Reynolds number corresponding to ~. The rela- 
tion between R, and ~ is determined by Eq. (14), in whose right-hand side one must put the 
asymptotic value (29) of the transition function for large R. From the equality thus ob- 
tained 

] 
~i . . . .  ] / R I ( I + R 1 )  (30) 

• 

i t  can be concluded tha t  f o r  ~ = 0.4 the values of  ~, = 28.7 and ~$ = 28.8, near the one 
selected in [1] ~, = 30, correspond to RI = 10.99 and R~ = ii.03, equal within high accuracy 
to R~ = ii, which we take from the surrounding value R = R, at the external boundary of the 
transition region. For • = 0.41 we would have n~ = 28. 

Mellor [5] did not seek an analytic expression for the transition function at 0 < R < 
R,, but replaced it by the result of graphical differentiation of the experimental velocity 
distribution curve suggested by Laufer [6]. At the point R, = ii Mellor placed a discontin- 
uity of the curve in the form of a finite jump to the subsequent (for R > R~) distribution 
of the transition function. 

We note in passing that in Mellor's work, published in 1966, there is no mention of the 
fact that the variables used by him differ only in notation from those introduced by us six 
years prior to that: the local Reynolds number R and the transition function f(R). Our 
paper at the Xth International Congress in Applied Mechanics in Stresa (Italy) in 1960, pub- 
lished in the conference proceedings [7], remained, obviously, unknown to Mellor. 

To obtain the required continuous expression for the transition function f(R), we first 
put on a discontinuous form of this function 

! I 
[ (R) = ~- [[0 (R) +/~ (R)I + ~- If~ (R) -- f0 (R)] sign (R -- R0, (31) 

where by fo(R) and f~(R) we understand the asymptotes given by equalities (24) and (29), and 
the following discontinuous function was introduced 

1 for R>RI, 
- sign (R - -  R~) = 0 for R = R ~ ,  (32) 

--1 for R < R 1 .  

As e a s i l y  v e r i f i e d ,  e x p r e s s i o n  (31) f o r  t h e  t r a n s i t i o n  f u n c t i o n  s a t i s f i e s  a l l  b ounda ry  
c o n d i t i o n s  e a r l i e r  m e n t i o n e d ,  w h i l e  f o r  R = R~ t h e r e  i s  a f i n i t e  jump, b e h i n d  which  (R > R~) 
it acquires the given asymptotic value (29). 

Recalling one of the possible analytic definitions of the sign function*: 

s i g n ( R - - R 0  = lim. 2 arctg[~(R--R1)],  (33) 

we find the following asymptotic expression (for large a) for the transition function 

] ]_J__ (34) f (R; a) = -~-  [/o (R) + [~ (R)] + 2 [ [ ~  (R) - -  [o (R)] 2 arctg [= (R - -  R1)], 
= 

o r ,  r e p l a c i n g  fo (R)  and f~(R) by t h e i r  v a l u e s  (24) and (29) and p u t t i n g  R~ = 11: 

[ (R; ~) = 1 q- 1.--~--R{l+O,OO92R + (1 - -  0,0092R) 2---arctg [a (R - -  11)]}. (35) 
Z �9 

*See, for example, G. A. Korn and T. M. Korn, Manual of Mathematics, McGraw-Hill (1968). 
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Fig. i. Comparison of the damping fac- 
tors D and Do with the Van Driest damping 
factor DV. D. 

So 

0 f g tg~ 

Fig. 2. Comparison of the calculated 
velocity curves in the transition re- 
gion with experimental data: i) [7]; 
2) [9]; 3) [ i0 ] .  

Hence we obtain by (I0) an expression for the damping factor 

1 { 2 a r c t g [ ~ ( R _ l l ) ] } .  (36) D (R; ~) = ~ 1 q- 0,0092R + (1 --  0, 0092R) 

The damping factor D(R; ~) can be considered as a function playing an intermediate role in 
calculations. This is already observed in considering the velocity representation (18). 
Equally accurately the transition function f(R; ~) can be written in brief form: 

[(R;  ~) = 1 + R D ( R ) ,  (37) 

and Eq. (14) relating R and q can be written in the form 

I 
~1 = - -  V R[1 + R D ( R ;  =)1. (38) 

The set of equalities (35), (36), and (38) serves as a parametric representation of the 
transition function f(n; ~) and the damping factor D(~; ~). The semiempirical theory dis- 
cussed does not give explicit expressions for the �9 function f(n; ~) and the damping 
factor D(n; ~) in terms of the universal ordinate ~. The Van Driest empirical equation for 
the damping factor [8], widely used in practice, 

Ov.o = [1 -- exp (-- WA,)] z (39) 

with the value of the experimental constant A, = 26 has no relation with the semiempirical 
theory discussed in the present study. 

As calculation show, it is quite sufficient to put ~ = i00, since ~ values higher than 
a = i00 provide no substantial change in the curves of the damping factor and the velocity 
profile. Only this a value is used in what follows, and is hence omitted in the character- 
istic functions f(R; ~) and D(R; ~). 
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The curves of D(n) and DV.D(q) shown in Fig. i show a significant difference between 
them, particularly sharply expressed for large n values. If the variation region of D(~) 
is restricted by values Nl~_<30, the corresponding region for DV.D(q) reaches approximately 
n~ = 140. 

For q values near q = 0, on the other hand, both functions D(q) and DV.D(~) coincide. 
Indeed, according to (i0) and (24) we have 

while in the same approximation 
D 01) = 7u2~12, 

�9 1 ~2 
Dv D(N) 

Tak ing  ~ = 0 .0092  and ~ - -  0 . 4 ,  we o b t a i n  

7~2= 0,001472, l /A2 .  = 1/26 ~ ' 0,001479. 

Th i s  makes i t  p o s s i b l e  t o  c o n c l u d e  q u i t e  a c c u r a t e l y  t h a t  t h e r e  i s  a c o n n e c t i o n  b e t w e e n  t h e  
c o n s t a n t s :  

A .  = 1 / (~dT)  (40) 

w i t h  t h e  same c o i n c i d e n c e  o f  t h e  c u r v e s  D(n) and DV.D(n) n e a r  t h e  v a l u e s  q -- 0 .  

4. Comparison of Calculated Velocity Profile with Experimental Data. Using Eq. (18) 
and the parametric definitions (36) and (38) of the damping factor, we find by a numerical 
calculation the velocity distribution in the transition region of a turbulent boundary layer, 
shown by the solid line in Fig. 2. For comparison the dashed line shows the velocity pro- 
file calculated by Eqs. (18) and (39). Despite the sharp difference in the damping factor 
distributions, shown in Fig. i, this difference is not substantial in the velocity distribu- 
tions. Notable is the difference of the outer boundary q = n,, equal according to the theory 
suggested to n~ = 29, from q, -- 60 according to Van Driest. Also notable is the systematic 
deviation of the dashed curve from the experimental points. 

Using the calculations performed, one can determine the constants A and B in the log- 
arithmic velocity profile (21). For the constant values ~ -- 0.4, y = 0.0092 the value B = 
4.7 was determined from the numerical calculation. According to Van Driest BV. D = 5.4, which 
differs substantially from the experimental 4.8-4.9. The value of A is sensitive to the 
choice of • = 5.76 for • = 014, and A = 5.61 for • 0.41). 

The experimental points on Fig. 2 correspond to the experimental studies of Laufer [6], 
Wieghard [9], and Tsuji and Morikawa [i0]. The observed variety in the experiments, particu- 
larly in the study of the last two authors, from which the velocity distribution was Borrowed, 
refers to the very origin of the transition from the region (dp/dx = 0) to the diffusion re- 
gion (dp/dx > 0), reflected some deviations of the experimental points from the calculated 
curve. Another reason for these deviations is the well-known "game of constants" (• = 0.40- 
0.41, y = 0.0092-0.0125, ql = 25-30) used in the experiments. 

Under the conditions mentioned, the results of comparing calculated and experimental 
data, shown in Fig. 2, can be considered fully satisfactory, and the use of the semiempirical 
theory suggested is justified. 

Along with the parametric shape of the connection Between f, D, ~, and the universal 
ordinate q it is also useful to obtain an admittedly approximate, but simple explicit shape 
of this dependence. With this in mind we use the following simplified approach. Under the 
square root in the right-hand side of (14), we replace the transition function f(R) by its 
least value f(R) = I, which leads to the dependence (25), rigorously valid only in the re- 
gion of theviscous sublayer. Eliminating R from (23) and (25), we obtain the approximate 
equality 

Do (~l) - -  1 - -  e - ' ~  ~-- 1 - -  e - (~/A*)~,  (41) 

which is not only not inferior in simplicity to Eq. (39), but, as can be concluded from Fig. 
1 and Fig. 2 based on it, is superior to the Van Driest equation (39) in the sense of ap- 
proxlmation to experimental data. 

The hydroaerodynamics graduate student V. V. Zyabrikov participated actively in dis- 
cussions of the present study, performed numerical calculations, and drew the figures. 
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NOTATION 

T, total shear stress; Tp, laminar shear stress; rt, its turbulent portion; u, average 
longitudinal velocity; u' and v', fluctuating velocities; <u'v'>, mean product of fluctuating 
velocities; ~, v, dynamic and kinematic coefficients of molecular viscosity; ~t, vt, same 
for the turbulent viscosity; p, fluid density; Z and Ip, real and "Prandtl" mixing lengths; 
rp, turbulent shear stress according to Prandtl; D, Do, and DV.D, damping factors; z, Van 
Karman constant; f, transition function; R, local Reynolds number;~=y~./v. ~=u/v., universal 
coordinate and velocity; v* = (Tw/P)*/2, dynamic velocity; ~w, shear stress at the wall; n~, 
R!, universal coordinate and local Reynolds number at the edge of the transition region; A, 
B, constants in the logarithmic velocity equation; y, porportionality constant in the fourth- 
order law of decrease of turbulent shear upon approaching the solid wall; and A,, a constant 
in the Van Driest damping factor. 
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